Recombinant Protease Inhibitor Enhances Oral Insulin Pharmacodynamics in Pigs

1Ramachandra Nagaraju, 1Arup R. Kuanr, 1Sonia Madan, 1Kajal Arora, 1Komal Gupta, 1Nupur M. Arora, 1Prabuddha K. Kundu, 1Yael Greenberg-Shushlal, 1Miriam Kidron, 1Avraham Hershko
2Premas Biotech Ltd., Gurgaon, India; 3Preclinical Services, Kfar HaOranim, Israel; 4Oramed Pharmaceuticals, Jerusalem, Israel; 5Technion-Israel Institute of Technology, Haifa, Israel

BACKGROUND

Oral insulin delivery is projected to provide both physiologic and technical benefits, and has been the focus of rigorous research efforts in recent years. The ORMD-0801 oral insulin formulation relies on the activities of both protease inhibitors and an absorption enhancer to ensure insulin integrity and bioavailability. The special blend of excipients both hinder proteolysis in the small intestine and enhance translocation of insulin across the gut epithelial lining. Once transported across the gut wall, the insulin is fermented to the hepatic portal vein, mimicking the natural route of endogenous pancreatic insulin, and then subjected to first-pass metabolism in the liver, before being delivered to peripheral sites of action.

OBJECTIVES

- To develop a recombinant protease inhibitor (rPI) identical to its naturally sourced (nsPI) counterpart
- To characterize the effectiveness of the rPI in vitro and in vivo

rPI was cloned and expressed in the Pichia pastoris expression vector (pPIC9K), in-frame with the Saccharomyces cerevisiae α-mating factor pre-sequence and the uCH secretory signal peptide. The in-silico-translated protein, which demonstrated 100% alignment with nsPI, was isolated and purified by a series of IEX chromatography steps followed by buffer-exchange with the final formulation buffer. The protein sample showed >95% purity.

Protein function was determined by incubating increasing concentrations of rPI or nsPI with a constant concentration of its substrate, followed by continuous spectrophotometric rate determination (Amax). rPI effectively inhibited its standard substrate in a dose-dependent manner (Figure 1A) and demonstrated 2.5-fold higher activity as compared to nsPI (Figure 1B).

CONCLUSIONS

rPI was successfully cloned, expressed and purified and showed higher anti-proteolytic activity when compared to the nsPI. When formulated with insulin, rPI provided a protective environment, preserving insulin integrity and function, as observed by its glucose-lowering effect in fasted pigs. The formulation containing 25 mg rPI provided the greatest anti-glycemic effect when compared to both control and other tested rPI doses. Taken together, rPI is likely to both enhance ORMD-0801 bioavailability and cut manufacturing costs.

For more information: estee@oramed.com
www.oramed.com