A novel GLP-1 analog delivered orally reduces postprandial glucose excursions in a porcine model

Miriam Kidron, PhD1, 3, Yael Shushlav, DVM2, Oded Ovadia, MSc2, Ehud Arbit, MD3

1Diabetes Unit, Hadassah University Hospital
2School of Pharmacy, Hebrew University of Jerusalem
3Oramed Pharmaceuticals, Jerusalem, Israel

Introduction

The incretins (GLP-1, GLP-1 analogs and DPP IV inhibitors) possess putative effects with potential benefit to diabetes management. These drugs have proven to preserve β-cell function, reduce oxidative stress, improve cardiac function, lower blood pressure, improve lipid profiles, reverse fatty liver, heighten insulin sensitivity and reduce postprandial hyperglucagonemia. However, to date, GLP-1 and its analogs are only available in parenteral dosage forms. In this study, we sought to examine whether ORMD-0901, a novel GLP-1 analog with a prolonged half-life, can be enterically delivered using Oramed’s drug delivery platform and retain its reported pharmacodynamic effect of reducing postprandial glucose excursions.

Experimental Methods

Five single-dose, enterically-delivered ORMD-0901 formulations were assessed in a postprandial glucose excursion porcine model. Each formulation was tested on 3 pigs (avg wt: 40 kg), whereby, ORMD-0901 was directly administered through an indwelling jejunal cannula. Animals were challenged with an oral glucose load (3gr/kg or 5gr/kg) 30 minutes after oral administration of ORMD-0901. Post-load glucose excursions were compared to those of controls challenged with equal amounts of glucose without ORMD-0901 pretreatment. Tolerance and adverse effects were also assessed.

Results

Enteric delivery of ORMD-0901 was well tolerated by all animals and no adverse reactions were noted. Postprandial glucose excursions were significantly reduced in pigs receiving ORMD-0901 before a 5 g/kg glucose challenge (Fig 1). Mean area under the curve (AUC) values of pigs pretreated with ORMD-0901 Formulations RG3 or AG2 were significantly lower than in their non-ORMD-0901 counterpart sessions (p=0.004 and 0.041, respectively, Fig 2). AUCs were up to 34% lower than control animals treated with glucose alone.

Summary and Conclusions

• Enteric administration of the novel ORMD-0901 GLP-1 analog prior to a glucose load, exhibited a potent curbing effect on postprandial glucose excursions, replicating the effects of parenterally-administered GLP-1.
• Oral delivery mimics the physiologic route of GLP-1 secretion and absorption and establishment of a portal/peripheral gradient. It may hold more and yet unknown beneficial effects.
• High portal vein GLP-1 concentrations together with low peripheral concentrations are likely responsible for the lack of side effects.

Acknowledgments: Authors would like to thank Dr Yehudit Posen for her assistance.

For more information please contact: ir@oramed.com or www.oramed.com